
PHYSICAL REVIEW E, VOLUME 63, 011506
Monte Carlo simulations of polymer brushes

C.-M. Chen and Y.-A. Fwu
Physics Department, National Taiwan Normal University, Taipei, Taiwan

~Received 4 July 2000; published 20 December 2000!

Three-dimensional Monte Carlo simulations of flexible and semiflexible polymer brushes at various grafting
densities are carried out to study their equilibrium structure and attendant properties by using the bond
fluctuation model. Our simulation results of long flexible polymer brushes are, in general, consistent with
predictions of the self-consistent field theory. However, a depletion layer near the substrate is only observed at
small grafting densities but not at medium densities. We have also measured the brush height and end-to-end
distance of various polymer brushes, and their dependence on grafting density, chain length, and chain stiffness
are obtained. The distribution of bending angles at various temperatures are calculated for four different forms
of bending energy and our simulation results agree with theoretical predictions very well. Moreover, we study
the isotropic-to-nematic transition of polymer brushes, which is found to be a continuous phase transition from
our simulation results. Finally, we discuss the effects of local grafting density fluctuation on the monomer and
end density distributions.

DOI: 10.1103/PhysRevE.63.011506 PACS number~s!: 61.25.Hq, 64.60.2i, 83.10.Rs
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I. INTRODUCTION

Polymer chains can be end grafted onto a surface to f
a polymer brush which could have important applications
various different problems of lubrication, colloidal stabilit
adhesion, and biotechnology@1#. For example, polymer
brush coated lipid vesicles can be used for controlled d
delivery, in which polymer chains can protect the vesic
from the attack of the immune system. Such brushes h
attracted much theoretical@2–5#, computational@6,7#, and
experimental@8,9# attention in recent years. Most theoretic
considerations have concentrated on the properties of flex
polymer brushes tethered to a flat@2–4# or a curved surface
@10,11# based on models that describe directionally isotro
interactions in the long chain limit of flexible polymer
Various approximation schemes have been employed to
culate the brush height and density profile of polym
brushes, such as Flory-type mean field arguments@2,3# and
self-consistent-field~SCF! methods@4#. Among these differ-
ent approaches, the predictions of SCF methods seem t
in better agreement with numerical results from lattice
off-lattice simulations and experimental observations by n
tron scattering techniques. However most previous stu
on polymer brushes by computer simulations or experime
are limited to brushes of low grafting densities due to fin
computation time or difficulties in preparing samples. Un
recently experiments have been performed to study bru
with higher densities using a thermally sensitive poly~N-
isopropylacrylamide! microgel as the substrate which shrin
at high temperatures~critical solution temperature is abou
32 °C! leading to a decrease in its surface area about 10 ti
@9#. It is also more available now to do intensive simulatio
using a cluster of dual CPU Linux PC workstations.

Flexible polymers are usually represented by a be
spring model@12# in which the isotropic interactions be
tween monomers are considered and the interactions betw
springs are ignored. The equilibrium structure and attend
properties of these flexible polymer brushes are now v
well understood. For many synthetic and biological polym
1063-651X/2000/63~1!/011506~10!/$15.00 63 0115
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~such as DNA and actin filaments!, the backbone structure
of these polymers are less flexible or more persistent. Ins
of the bead-spring model, these systems can be better re
sented by a series of connected rigid rods whose lengt
roughly the persistent length of polymer chains@5,13#. In this
case, the interactions between rods of different chains
those on the same chain are in general orientation depen
An isotropic-to-nematic phase transition@5# is expected as
the strength of interactions varies.

In this paper, we will study the equilibrium structure an
attendant properties of flexible and semiflexible polym
brushes by three-dimensional Monte Carlo simulations us
the bond-fluctuation model. The method of Monte Ca
simulations for the bond-fluctuation model is described
Sec. II. In Sec. III, the equilibrium structure and attenda
properties of polymer brushes are investigated for vari
chain lengths, grafting densities, and chain stiffness, suc
the brush height, monomer density profile, and end-segm
distribution. A detailed investigation of the distribution o
bending angles for four different forms of bending energy
given in Sec. IV. In Sec. V, we discuss the isotropic-t
nematic phase transition of polymer brushes as the ch
stiffness, grafting density, or chain length are varied. T
effects of local grafting density fluctuation are discussed
Sec. VI. Section VII contains the summary and conclusio
of this paper.

II. ALGORITHM OF MONTE CARLO SIMULATIONS

The bond fluctuation model is an efficient method
simulating the dynamics of large numbers of polymer chai
It was originally introduced by Carmesin and Kremer@14#
for studying dynamics of polymer chains in various spat
dimensions. Since then it has been used for investigatio
the crossover between Rouse and reptation dynamics@15#,
for studying interdiffusion of polymer blends@16#, the dy-
namics of polymer melts near glass transition@17#, and poly-
mer crystallization in dilute solution@18#.

Each monomer in the model occupies a 23232 cube of
©2000 The American Physical Society06-1
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sites on a cubic lattice as shown in Fig. 1. The set of allow
bond vectors is

B5P~2,0,0!øP~2,1,0!øP~2,1,1!øP~2,2,1!

øP~3,0,0!øP~3,1,0!, ~1!

where P(a,b,c) stands for the set of all permutations a
sign combinations of6a,6b,6c. The number of configu-
rations per bond isz5108. The length of one bond can tak
any one of the five valuesA2,A5,A6,A3,A10 ~in units of
lattice spacing!. Chains satisfy the excluded volume co
straint: no lattice site may be occupied by more than o
monomer. Each attempted move is to move one monome
one lattice site in one of the six lattice directions. The mo
is rejected if the new position breaks the excluded volu
constraint, or if the new bond vectors between the mono
which was moved and its neighbors are not contained in
setB. The setB is chosen to satisfy the constraints of bo
excluded volume between monomers and topological
tanglement between chains~i.e., two chains cannot pas
through each other!. If any other bond vectors were added
this set, some chains would become ‘‘phantom’’ chains.

Since semiflexible polymer chains have a longer per
tent length than flexible polymers, we have added a bo

FIG. 1. Two chains of seven monomers are shown. All mo
mers are shown in one plane for convenience although the sim
tions are done in three dimensions. Each bond in our mode
equivalent to the persistent length of polymer chains, which c
tains several real bonds.
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bond interaction between two parallel neighboring bonds
stead of a monomer-monomer interaction between
neighboring monomers. This is modeled by an energy21
unit if it is an attractive interaction~in poor solvents! or 1
unit if it is a repulsive interaction~in good solvents! when-
ever there are two parallel bonds~nonsuccessive! on neigh-
boring sites. In addition, in our model, there is a bendi
energy ofe(12cosu) for two successive bonds with a bon
angle u, wheree is the bending rigidity. We note that th
average bond-bond interaction is much smaller than the
erage bending energy fore;1 since the probability of two
bonds in parallel is quite small. Therefore, the effects
bond-bond interaction have been ignored in this paper.

Simulations are carried out at a constant temperaturT
using the Metropolis algorithm. If any attempted move
monomers satisfies the excluded volume constraint and
new bond vectors are still in the allowed set, then the mo
is accepted with probability

w5min@1,exp~2DE/T!#, ~2!

whereDE is the energy change. The two parameters in
model are the temperatureT and the bending rigiditye. If
T/e@1 andT is not much less than 1, the chain behaves a
self-avoiding walk. IfT/e!1 the chain will be rodlike. In
order to determine appropriate parameter ranges for
simulations, we measured the angular correlations betw
nearest neighboring bonds (f 1) and next nearest neighborin
bonds (f 2) as a function ofT/e ~as shown in Fig. 2!, where
f 1[^ui•ui 11&en, f 2[^ui•ui 12&en, andui is the unit vector
of the i th bond. The angular bracket^ &en indicates an en-

-
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-

FIG. 2. Angular correlations between nearest neighboring bo
( f 1 ) and next nearest neighboring bonds (f 2 ) as a function asT/e.
For T/e.5, both correlations are not affected by the stiffness
rametere. For T/e,5, polymer chains are less flexible or mo
persistent.
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MONTE CARLO SIMULATIONS OF POLYMER BRUSHES PHYSICAL REVIEW E63 011506
semble average over all possible configurations weighted
their Boltzmann probabilities. Figure 2 shows that forT/e
.5 there is almost no change in these correlations. Bothf 1
and f 2 have small positive values at largeT/e which are due
to excluded volume constraints only but not the bending
ergy term. For 0.5,T/e,5 the chain is significantly stiff-
ened by the bending energy term and thus correspondin
semiflexible polymer chains. In all simulations presented
this paper 0.5,T/e so that the chains in solution behave lik
flexible or semiflexible self-avoiding walks.

The simulated polymer brush is randomly grafted on a
substrate of area 30330 and a periodic boundary condition
applied. Each polymer chain is initially perpendicular to t
substrate and later allowed to relax to its equilibrium st
such that the average end-to-end distance of the c
reaches an equilibrium value. After the equilibrium
reached, we then perform a long simulation to calculate
monomer density distribution, end density distribution, en
to-end distance, angular distribution, and orientation or
parameterS for various values of grafting density, cha
length, and bending rigidity. The monomer and end den
distributions have been averaged every two layers in thz
direction to eliminate the lattice effects. Thus in the follow
ing paragraphs of this paper, we will use two lattice spaci
as the unit of length in thez direction.

III. EQUILIBRIUM STRUCTURE OF POLYMER
BRUSHES

The equilibrium structure of flexible polymer brushes h
been an attractive research topic for many years. Alexan
@2# and de Gennes@3# first proposed the so-called Flory a
gument which estimates the average brush height~h! by bal-
ancing the configurational entropy of polymer chains and
excluded interaction between monomers based on a
function ansatz of monomer density distribution. More sp
cifically, h;N(wsa2)1/3, whereNa is the chain length of
polymers,w is the excluded volume parameter, ands is the
grafting density. Later Milner, Witten, and Cates@4# pre-
sented a more detailed self-consistent field~SCF! theory of
polymer brushes. Instead of assuming a step function
monomer density distribution, SCF predicts a ‘‘paraboli
brush whose monomer density@f(z)# and end density
@e(z)# along the substrate normal direction~z direction! can
be expressed as

f~z!

s2/3 5
p2

8w
~H22Z2!u~H2Z! ~3!

and

e~z!N

s2/3 5
p2

2w
Z~H22Z2!1/2u~H2Z!, ~4!

where H5h/(Ns1/3) and Z5z/(Ns1/3) are rescaled brush
height and distance away from the substrate, andu(z) is the
step function.

To compare our simulation results with the predictions
SCF, we plot the rescaled monomer density distribution
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end density distribution fore51.0 andT57.5 (T/e57.5 is
in the flexible regime! in Figs. 3 and 4 which qualitatively fit
theoretical curves~solid lines! of Eqs.~3! and~4!. As shown
in Fig. 3, apart from the regions close to the substrate and
tail of the profiles, our simulated data collapses reasona
well onto a universal curve as predicted by SCF. The ex
nential tail of monomer density profile is, however, in agre
ment with the prediction of SCF for finite chains@1,7#. The
length scale of the tail relative to the brush height decrea
with chain length and grafting density and is vanishing
small at the long chain limit. Near the substrate, our Mo
Carlo data show a depletion layer@3,7# at low grafting den-
sities (s,0.09) but an enhancement in the monomer den
at medium grafting densities (s.0.1). This enhancemen
has been confirmed by performing several long Monte Ca
simulations. To further investigate the difference in mon
mer density at different grafting densities, in Figs. 5~a! and
5~b!, we show the monomer density distribution at differe
time steps after releasing the brushes from their initial c
figuration. As shown in Figs. 5~a! (s50.02) and 5~b! (s
50.22), the polymer chains shrink to increase the sys
entropy and two peaks are observed near the substrate a
the brush tail. As time increases, both peaks grow@the outer
peak grows faster in~a! than in ~b!# and the outer peak
moves toward the substrate. Finally, the outer peak st
before reaching the substrate. As a result, near the subs
we observe a depletion layer in~a! for low grafting densities
but an enhancement layer in~b! for medium grafting densi-
ties. We conclude that polymer brushs at a medium graft

FIG. 3. Rescaled monomer density distributions of polym
brushes along thez direction for T/e57.5 and (N,s)5(30,0.04),
~50,0.04!, ~30,0.13!, ~50,0.13!, ~30,0.22!, ~50,0.22!, ~30,0.36!, and
~50,0.36!. The solid line is a theoretical curve of SCF. HereZ is
defined aszN21s21/3.
6-3
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C.-M. CHEN AND Y.-A. FWU PHYSICAL REVIEW E63 011506
density strongly compress near the substrate to increase
entropy of the system. The agreement in the end den
between theoretical predictions and our simulated dat
only good at the limit of long chain length and low graftin
density, as shown in Fig. 4. For short chains, the exponen
tail is significant. At medium grafting densities, the peak
end density distribution is much sharper than that predic
by SCF. In this case, the end density is suppressed in
inner region due to high monomer density.

The brush height of a polymer brush can be measu

FIG. 4. Rescaled end density distributions of polymer brus
along the z direction for T/e57.5 and (N,s)5(30,0.04), ~50,
0.04!, ~30,0.13!, ~50,0.13!, ~30,0.22!, ~50,0.22!, ~30,0.36!, and
~50,0.36!. The solid line is a theoretical curve of SCF. HereZ is
defined aszN21s21/3.
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from the monomer density distribution by fitting Eq.~3!. For
flexible polymers, theoretical prediction of the brush heig
~hf}Nsb whereb51/3) is found to be in great agreeme
with simulation results at the limit of long chains. For sho
chains, the brush height is roughly proportional tos1/4 or
b.0.25, indicating that nonlinear stretching of polym
chains becomes significant and one can express the str
ing energy asf stretching}h3 for N;10. A list of the values of
b for various chain lengths is given in Table I. For semifle
ible polymer brushes, the brush height (hsf) is expected to be
longer than that of flexible brushes due to the bending ene
and we havehsf5he1hf , where he is the correction of
brush height due to bending energy. The dependence
brush height (hsf) on the chain stiffness and temperature
shown in Fig. 6 for (N,s)5(20,0.22)~a!, ~40, 0.22! ~b!, and
~60, 0.22! ~c!. The intercept of those curves with they axis in
Fig. 6 gives the brush height of flexible brushes. It is cle
from Fig. 6 thathe is proportional toe/T and N. Further
investigation shows no dependence ofhe on the grafting den-
sity. From our Monte Carlo simulation results, we can e
press the brush height of semiflexible brushes as

hs f.k1

e

T
N1k2Nsb, ~5!

where k1.0.11 andk2.1.38. Therefore, the correction o
brush height due to chain stiffness is about one tenth. Sim
analyses can be done for the end-to-end distance (l s f) of
each chain as shown in Fig. 7 and we conclude an expres
of l s f as

s

TABLE I. The values ofb, g, andd for various chain lengths.

N 20 40 60
b 0.27 0.31 0.32
g 0.17 0.28 0.31
d 0.24 0.32 0.34
FIG. 5. Monomer density dis-
tributions of polymer brushes
along the z direction for T/e
57.5, N530 at various time
steps. Time ~t! is in units of
Monte-Carlo steps. The grafting
density is 0.02~a! and 0.22~b!.
6-4
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l s f.k3

e

T
Nsg1k4Nsd, ~6!

wherek3.0.21,k4.2.1, and the values ofg andd are given
in Table I. Unlike Eq.~5!, Eq. ~6! shows a dependence of th

FIG. 6. The dependence of brush height of semi-flexible po
mer brushes on the bending rigidity and temperature for (N,s)
5(20,0.22)~a!, ~40,0.22! ~b!, and~60,0.22! ~c!.

FIG. 7. The dependence of end-to-end distance of semi-flex
polymer brushes on the bending rigidity and temperature
(N,s)5(20,0.22)~a!, ~40,0.22! ~b!, and~60,0.22! ~c!.
01150
correction to end-to-end distance on the grafting den
(sg) andg increases withN. In the appendix, we present
simple scaling argument for Eqs.~5! and ~6!.

IV. DISTRIBUTION OF BENDING ANGLES

To further analyze equilibrium properties of polym
brushes, we study the change in the bending angle distr
tion as temperature varies. For an equilibrated brush, the
tribution of bending angles at high temperatures is unifo
except for large angles due to the excluded volume constr
~no overlaps between monomers!. As temperature decrease
the angular distribution is expected to be more weighted
small angles and there exists an unbiased angle (uu) whose
weighting does not change with temperature. Since the p
ability of a bending angle is proportional to its Boltzman
factor, we can express the weighting of thei th angle at tem-
peratureT as

Pi~T!5
1

Na
expS a i

T D , ~7!

whereNa is the number of allowed angles,a i5Eu2Ei is the
weighting factor,Eu is the energy of the unbiased angle, a
Ei is the energy of thei th angle. To determine the unbiase
angle, we can substitute it by anyone of thoseNa angles and
check if the normalization conditionS i 51

Na Pi(T)51 holds at
various temperatures. Assuming that the energy of a poly
chain is dominated by the bending energy, we can calcu
the corresponding spectrum of weighting factor for a parti
lar form of bending energy. Here, four different forms
bending energy are used to investigate the spectrum and
are expressed in the following:

EB
cosine5e~12cosu!,

EB
linear52e~u/p!,

~8!
EB

quadric52e~u/p!2,

EB
quartic52e~u/p!4,

where the range ofu is chosen to be between 0° and 144°
order to compare with our simulation results using the bo
fluctuation model~no overlaps between monomers rules o
angles larger than 144°!. If we divide the range ofu into 145
angles, the unbiased angle can be obtained by varying
spectrum of weighting factor$a i% subject to the normaliza
tion conditionS i 51

Na Pi(T)51 at various temperatures, whic
is found to be 75° forEB

cosine,72° for EB
linear,84° for EB

quadric,
and 96° forEB

quartic. It is obvious that the unbiased angle fo
a linear bending energy is 72° which is at the middle of t
angular range. For the other three asymmetric forms of be
ing energy, the unbiased angle is shifted to larger values.
angular distribution can be calculated at any tempera
from $a i% and is displayed in Fig. 8 forT/e51. The agree-
ment between the theoretical curve and our simulation d
of the cosine form is excellent. We note that, forT/e&1, the

-

le
r
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C.-M. CHEN AND Y.-A. FWU PHYSICAL REVIEW E63 011506
unbiased angle calculated deviates from the above pred
values and one should expect a slightly modified angu
distribution.

The distribution of bending angles can also be measu
at various temperatures in our simulations from which
spectrum of weighting factor is obtained. In our model, if w
divide the range ofu into 180 units, there are 72 allowe
bending angles and the maximum is 144°. To remove
lattice effects, we rescale the angular distribution at temp
ture T by dividing it by the distribution at infinite tempera
ture such that the rescaled distribution is uniform at h
temperatures. The calculated spectrum$a i% using the bond
fluctuation model fors50.22 andN520 is shown in Fig. 9
where only part of data points are shown. The solid line i
theoretical curve predicted bya i5e(cosu i2cosuu) with e
50.2 anduu575°, which fits our simulation data~circles!
very well. Moreover, from Fig. 8 it is clear that small ben
ing angles are more populated for the cosine form of bend
energy than for other forms, and we expect the degree
stretching of polymer chains to b
cosine.linear.quadric.quartic. In Fig. 10, we show the
monomer density distribution fors50.22, N550, andT/e
51 using four different forms of bending energy. The abo
prediction is confirmed by the fact that the brush height is
the sequence of cosine.linear.quadric.quartic.

V. ISOTROPIC TO NEMATIC PHASE TRANSITION

The isotropic-nematic phase transition of polymer s
tems is also an interesting subject and attracts much atten
@19,5#. To describe such a phase transition in a polym

FIG. 8. Theoretical predictions of the distribution of bendi
angles of a polymer brush ate/T51 for four different forms of
bending energy. The angular distribution of the cosine form is m
more populated at small bending angles. Open circles are sim
tion data of the cosine form.
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brush, it is convenient to define an order parameterS
[(3^cos2 v&en21)/2 to characterize the orientational orde
ing, wherev is the angle between orientation of a segme
and the normal to the substrate~i.e., thez direction!. To view

h
la-

FIG. 9. The spectrum of weighting factor$a i% for e50.2 ~s!,
0.4 ~h!, 0.6 ~L!, 0.8 ~3!, and 1 ~n! using the cosine form of
bending energy. The solid line is a theoretical curve fore50.2.

FIG. 10. The monomer density distribution of a polymer bru
for s50.22,N550, ande/T51 for four different forms of bending
energy.
6-6
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MONTE CARLO SIMULATIONS OF POLYMER BRUSHES PHYSICAL REVIEW E63 011506
this phase transition in a simple way, we consider a f
energy per chain composed of an anisotropic interaction
ergy (f anisotropy) and an orientational free energy (f orientation).
This anisotropic interaction energy could come from t
nematic interaction between two persistent segments or
bending energy between two consecutive segments an
assumed to have a power series expansion inS,

f anisotropy;const2uNS21¯ , ~9!

where u5u(e,s) is the coefficient of anisotropic interac
tions and always positive since both the bending energy
segment-segment interaction tend to align a polymer ch
along thez direction. The orientation free energy can
approximated in the following form as suggested by Ku
netsov and Chen@5#:

f orientation;
N~2S11!

12S 2S11

3 D 1/31const. ~10!

Such a free energy (f anisotropy1 f orientation) can be easily mini-
mized to find the ground state and the isotropic-nematic tr
sition is expected to be a first order phase transition.

To examine this simple theory, we have performed ma
simulations to study the phase transition of polymer brus
from an isotropic state to a nematic state by varying
bending rigidity, grafting density, temperature, and ch
length. As shown in Fig. 11, the order parameterS increases
linearly from zero as the grafting density increases forT/e
51, 2.5, 5, 7.5, 20, and 10 000. The isotropic phase occ

FIG. 11. The order parameterSas a function ofs for N520 and
e51 at various temperatures. A continuous isotropic-nematic ph
transition occurs at a small grafting density (s,0.02).
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only at very low grafting densities (s,0.02) and the
isotropic-nematic phase transition is possible to be conti
ous. It is clear that the above simple model cannot desc
the isotropic-nematic phase transition of polymer brus
and a more accurate model is desired. Moreover, as show
the previous section, the orientation free energy in Eq.~10! is
incorrect at the short chain limit and in this limit polyme
chains behave as ‘‘nonlinear’’ springs which favor an isot
pic phase over a nematic phase. In Fig. 12, we show
order parameterSas a function of chain lengthN. Our results
show thatS is almost a constant for long chain lengths a
becomes smaller asN decreases. In addition, the order p
rameterS increases with the grafting density at a very hi
temperature (T510 000) which indicates that the exclude
volume effect is the dominant source to drive the system
nematic phase in our model.

VI. EFFECTS OF LOCAL GRAFTING DENSITY
FLUCTUATION

In previous sections, we have studied the equilibriu
structure of randomly grafted polymer brushes without w
rying the effects of local grafting density fluctuation. How
ever, it is inevitable to face questions about the fluctuat
effects and their importance. For example, it would be di
cult and expensive to grow polymer brushes with an unifo
grafting density in industrial applications. To investigate t
effects of local grafting density fluctuation, we measure
monomer and end density distributions for polymer brus
of the same average density but different variance. Here
variance of grafting density is defined asv
5A^(s i /s21)2&, wheres is the average grafting density

se

FIG. 12. The order parameterS as a function ofN for T
510 000 ande51 at various grafting densities.S is almost a con-
stant for large chain lengths and is smaller for small chain len
since the polymer chains behave as ‘‘nonlinear’’ springs for sm
N.
6-7
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FIG. 13. The monomer density
distribution of polymer brushes a
various v and T for ~a! s50.02
and ~b! s50.22. The polymer
chain length is N550 and the
bending rigidity ise51.
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s to
s i is the local grafting density at thei th patch, and the sub
strate is divided into 25 patches of same area. The mono
density distributions of flexible (T/e57.5) and semiflexible
(T/e51) polymer brushes of chain lengthN550 are shown
in Fig. 13 fors50.02 ~a! ands50.22 ~b!. From Fig. 13, it
is clear that the effects of local grafting density fluctuati
on the monomer density distribution are insignificant a
therefore we only show two sets of data (v52 and 4.9!. To
be more specific, we find that the monomer density
slightly enhanced near the substrate for a larger local graf
density fluctuation. This enhancement is because poly
chains in a denser region tend to repel each other stro
due to the exclude volume effect, particularly for tho
monomers near the fixed ends, and these monomers can
01150
er

d

s
g
er
ly

nly

be bent to less dense regions near the substrate. This
nomenon is true for both flexible and semiflexible brushes
various grafting densities. However, for small grafting de
sities the brush height is slightly reduced in the case o
larger fluctuation, but the brush height for medium grafti
densities is not affected since it is more difficult for tho
monomers in the outer region to move in due to a lar
monomer density. Similarly the end density in the inner
gion is enhanced for a larger fluctuation as shown in Fi
14~a! (s50.02) and 14~b! (s50.22). The reason for this
enhancement of the end density in the inner region is
cause fluctuation tends to reduce the monomer density in
outer region and makes it easier for the end monomer
move toward the substrate.
FIG. 14. The end density distribution of polymer brushes at variousv andT for ~a! s50.02 and~b! s50.22. The polymer chain length
is N550 and the bending rigidity ise51.
6-8
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MONTE CARLO SIMULATIONS OF POLYMER BRUSHES PHYSICAL REVIEW E63 011506
VII. SUMMARY AND CONCLUSIONS

To summarize, we have used the bond fluctuation mo
to study various equilibrium properties of flexible and sem
flexible polymer brushes in great detail. Significant improv
ment toward understanding polymer brushes has been m
in this paper. For flexible brushes, our simulation results
in general consistent with theoretical predictions of SC
However, the depletion layer near the substrate is only
served at low grafting densities, and the monomer den
near the substrate is enhanced at medium grafting dens
due to a strong compression of polymer chains. Note t
although the grafting density in our simulations is up to 0.
we have not seen the Pincus regime where polymer ch
are strongly stretched@20#. For semiflexible polymer
brushes, we find that the correction of brush height due to
bending energy is proportional toNe/T, and is only about
one tenth of the brush height. Interestingly, we find that
correction of end-to-end distance due to bending rigidity
also one tenth of the end-to-end distance, but this correc
has a dependence ons which needs a theoretical explan
tion. Moreover, the distribution of bending angles of po
mer brushes is analyzed at various temperatures. Four di
ent forms of the bending energy are used to study the ang
distribution and their corresponding unbiased angles are
culated. Compared with our simulation results, we find
cellent agreement for the spectrum of weighting factor$a i%.
In addition, we have also investigated the isotropic to ne
atic phase transition of polymer brushes. From our simu
tions, we find that this phase transition is controlled by
excluded volume effect~or the grafting density! and the
bending energy has very little effect on the transition.
contrast to a first order phase transition predicted by a sim
model, we find a possible second order isotropic-nem
transition at a very small grafting density. Furthermore,
short polymer chains, the nonlinear effect is found to fav
the isotropic phase over the nematic phase. Finally, we h
studied the effects of local grafting density fluctuation. F
large fluctuation, both monomer density and end density
enhanced near the substrate at various grafting densities
temperatures. However, these effects are small and can
sibly be ignored in industrial applications.
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APPENDIX: SCALING OF END-TO-END DISTANCE OF
SEMIFLEXIBLE POLYMER BRUSHES

The end-to-end distance~l! of long flexible chains ofN
segments is known to beANa, wherea is the Kuhn length.
For semi-flexible polymer chains, the mean square end
end distance can be written as

l s f
2 5K S (

i 51

N

r i D S (
j 51

N

r j D L
5Na212K (

i 51

N21

(
j 5 i 11

N

r i•r j L
. l 212K (

i 51

N21

r i•r i 11L , ~A1!

for small bending rigiditye, wherer i is the bond vector of
the i th segment. For the cosine form of bending energy,
nearest bond-bond correlation can be calculated as

^r i•r i 11&[a2E cosu expF2
e

T
~12cosu!Gdu

.
pe

2T
a2. ~A2!

Therefore the mean square end-to-end distance of a sem
ible chain isl s f

2 ;(11e/T) l 2. Rescaling the length by a fac
tor 12e/(2T), the free energy of a semiflexible brush can
written as

F;
N2s

l s fS 12
e

2TD 1

l s f
2 S 12

e

TD
N

. ~A3!

Minimizing Eq. ~A3! with respect tol s f , we obtain

l s f;Ns1/3S 11
e

TD , ~A4!

which is consistent with Eq.~6! in the long chain limit. We
note a difference between Eqs.~5! and ~6! in the s depen-
dence of the correction part due to bending rigidity. It
possible that rescaling of brush height might have a dep
dence ons which cancels thes dependence of the correctio
part in Eq.~5!. A more complete theory would be required
resolve this difference.
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