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Monte Carlo simulations of polymer brushes
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Three-dimensional Monte Carlo simulations of flexible and semiflexible polymer brushes at various grafting
densities are carried out to study their equilibrium structure and attendant properties by using the bond
fluctuation model. Our simulation results of long flexible polymer brushes are, in general, consistent with
predictions of the self-consistent field theory. However, a depletion layer near the substrate is only observed at
small grafting densities but not at medium densities. We have also measured the brush height and end-to-end
distance of various polymer brushes, and their dependence on grafting density, chain length, and chain stiffness
are obtained. The distribution of bending angles at various temperatures are calculated for four different forms
of bending energy and our simulation results agree with theoretical predictions very well. Moreover, we study
the isotropic-to-nematic transition of polymer brushes, which is found to be a continuous phase transition from
our simulation results. Finally, we discuss the effects of local grafting density fluctuation on the monomer and
end density distributions.
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[. INTRODUCTION (such as DNA and actin filamenighe backbone structures
of these polymers are less flexible or more persistent. Instead

Polymer chains can be end grafted onto a surface to forraf the bead-spring model, these systems can be better repre-
a polymer brush which could have important applications insented by a series of connected rigid rods whose length is
various different problems of lubrication, colloidal stability, roughly the persistent length of polymer chajifsl3]. In this
adhesion, and biotechnologjl]. For example, polymer Case, the interactions between rods of different chains and
brush coated lipid vesicles can be used for controlled drughose on the same chain are in general orientation dependent.
delivery, in which polymer chains can protect the vesiclesAn isotropic-to-nematic phase transiti¢f] is expected as
from the attack of the immune system. Such brushes hav&e strength of interactions varies.
attracted much theoretici2—5], computational[6,7], and In this paper, we will study the equilibrium structure and
experimenta[8,9] attention in recent years. Most theoretical attendant properties of flexible and semiflexible polymer
considerations have concentrated on the properties of flexiblerushes by three-dimensional Monte Carlo simulations using
po]ymer brushes tethered to a f[@t_4] or a curved surface the bond-fluctuation model. The method of Monte Carlo
[10,11] based on models that describe directionally isotropicsimulations for the bond-fluctuation model is described in
interactions in the long chain limit of flexible polymers. Sec. Il. In Sec. IlI, the equilibrium structure and attendant
Various approximation schemes have been employed to caoperties of polymer brushes are investigated for various
culate the brush height and density profile of po|ymerchain lengths, grafting densities, and chain stiffness, such as
brushesy such as F|ory-type mean field argumm@ and the brush helght, monomer denSity prOﬁle, and end-Segment
self-consistent-fieldSCH methodg4]. Among these differ- distribution. A detailed investigation of the distribution of
ent approaches, the predictions of SCF methods seem to €nding angles for four different forms of bending energy is
in better agreement with numerical results from lattice ordiven in Sec. IV. In Sec. V, we discuss the isotropic-to-
off-lattice simulations and experimental observations by neuf€matic phase transition of polymer brushes as the chain
tron scattering techniques. However most previous studiegtiffness, grafting density, or chain length are varied. The
on polymer brushes by computer simulations or experimentgffects of local grafting density fluctuation are discussed in
are limited to brushes of low grafting densities due to finiteSec. VI. Section VII contains the summary and conclusions
computation time or difficulties in preparing samples. Until Of this paper.
recently experiments have been performed to study brushes
yvith higher dens.ities. using a thermally sensitiye QNW Il. ALGORITHM OF MONTE CARLO SIMULATIONS
isopropylacrylamidemicrogel as the substrate which shrinks
at high temperature&ritical solution temperature is about ~ The bond fluctuation model is an efficient method of
32°C) leading to a decrease in its surface area about 10 timesmulating the dynamics of large numbers of polymer chains.
[9]. It is also more available now to do intensive simulationslt was originally introduced by Carmesin and Krenjéd]
using a cluster of dual CPU Linux PC workstations. for studying dynamics of polymer chains in various spatial

Flexible polymers are usually represented by a beaddimensions. Since then it has been used for investigation of
spring model[12] in which the isotropic interactions be- the crossover between Rouse and reptation dynafiik
tween monomers are considered and the interactions betweéor studying interdiffusion of polymer blend46], the dy-
springs are ignored. The equilibrium structure and attendarmamics of polymer melts near glass transiti@i], and poly-
properties of these flexible polymer brushes are now veryner crystallization in dilute solutiofl8].
well understood. For many synthetic and biological polymers Each monomer in the model occupies &2X 2 cube of
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FIG. 2. Angular correlations between nearest neighboring bonds
(f,) and next nearest neighboring bonds ) as a function a3/e.
— For T/e>5, both correlations are not affected by the stiffness pa-
rametere. For T/e<5, polymer chains are less flexible or more
persistent.

bond interaction between two parallel neighboring bonds in-
FIG. 1. Two chains of seven monomers are shown. All mono-Stéad of a monomer-monomer interaction between two
mers are shown in one plane for convenience although the simuld€ighboring monomers. This is modeled by an enerdy
tions are done in three dimensions. Each bond in our model i¢nit if it is an attractive interactiorfin poor solventsor 1
equivalent to the persistent length of polymer chains, which conunit if it is a repulsive interactioriin good solventswhen-
tains several real bonds. ever there are two parallel bon@isonsuccessiyeon neigh-
boring sites. In addition, in our model, there is a bending
sites on a cubic lattice as shown in Fig. 1. The set of allowednergy ofe(1— cosé) for two successive bonds with a bond
bond vectors is angle 6, wheree is the bending rigidity. We note that the
average bond-bond interaction is much smaller than the av-
B=P(2,0,0UP(2,1,0UP(2,1,)UP(2,2,) erage bending energy fa~1 since the probability of two
bonds in parallel is quite small. Therefore, the effects of
UPE0.0UPE.LO, @) bond-bond interaction have been ignored in this paper.
where P(a,b,c) stands for the set of all permutations and ~Simulations are carried out at a constant temperafure
sign combinations of-a,*b,*c. The number of configu- Using the Metropolis algorithm. If any attempted move of
rations per bond ig=108. The length of one bond can take Monomers satisfies the excluded volume constraint and the
any one of the five values2,v5,6,13,v10 (in units of  New bond vec_tors are st_ll_l in the allowed set, then the move
lattice spacing Chains satisfy the excluded volume con- IS @ccepted with probability
straint: no lattice site may be occupied by more than one )
monomer. Each attempted move is to move one monomer by w=min[1,exg —AE/T)], 2
one lattice site in one of the six lattice directions. The move
is rejected if the new position breaks the excluded volumevhereAE is the energy change. The two parameters in the
constraint, or if the new bond vectors between the monomemodel are the temperatuie and the bending rigiditye. If
which was moved and its neighbors are not contained in thé/e€>1 andT is not much less than 1, the chain behaves as a
setB. The setB is chosen to satisfy the constraints of both self-avoiding walk. IfT/e<1 the chain will be rodlike. In
excluded volume between monomers and topological enerder to determine appropriate parameter ranges for the
tanglement between chainge., two chains cannot pass simulations, we measured the angular correlations between
through each othgrlf any other bond vectors were added to nearest neighboring bonds$;§ and next nearest neighboring
this set, some chains would become “phantom” chains.  bonds {,) as a function ofTf/e (as shown in Fig. g where
Since semiflexible polymer chains have a longer persisf;=(U;- Ui, 1)en, f2=(Ui-Uy2)en, anduy; is the unit vector
tent length than flexible polymers, we have added a bondef the ith bond. The angular brackét., indicates an en-
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semble average over all possible configurations weighted by

their Boltzmann probabilities. Figure 2 shows that fole

>5 there is almost no change in these correlations. Bpth

andf, have small positive values at largée which are due 1
to excluded volume constraints only but not the bending en-
ergy term. For 0.5 T/e<5 the chain is significantly stiff-
ened by the bending energy term and thus corresponding to
semiflexible polymer chains. In all simulations presented in
this paper 0.5 T/e so that the chains in solution behave like
flexible or semiflexible self-avoiding walks.

The simulated polymer brush is randomly grafted on a flat
substrate of area 3030 and a periodic boundary condition is
applied. Each polymer chain is initially perpendicular to the
substrate and later allowed to relax to its equilibrium state
such that the average end-to-end distance of the chain
reaches an equilibrium value. After the equilibrium is
reached, we then perform a long simulation to calculate the r
monomer density distribution, end density distribution, end-
to-end distance, angular distribution, and orientation order
parameterS for various values of grafting density, chain
length, and bending rigidity. The monomer and end density 0
distributions have been averaged every two layers inzthe 0
direction to eliminate the lattice effects. Thus in the follow-
ing paragraphs of this paper, we will use two lattice spacings

as the unit of length in the direction. FIG. 3. Rescaled monomer density distributions of polymer
brushes along the direction forT/e=7.5 and {,o)=(30,0.04),
lll. EQUILIBRIUM STRUCTURE OF POLYMER (50,0.04, (30,0.13, (50,0.13, (30,0.23, (50,0.23, (30,0.36, and
BRUSHES (50,0.36. The solid line is a theoretical curve of SCF. Hetds
defined agN 1o~ %5,
The equilibrium structure of flexible polymer brushes has
been an attractive research topic for many years. Alexandef,,q density distribution foe=1.0 andT=7.5 (T/e=7.5 is
[2] and de Gennef3] first proposed the so-called Flory ar- i, the flexible regimgin Figs. 3 and 4 which qualitatively fit
gument which estimates the average brush heighby bal- 05 retical curvessolid lineg of Egs.(3) and (4). As shown
ancing the configurational entropy of polymer chains and the, rig 3. apart from the regions close to the substrate and the
excluded interaction between monomers based on a Stej| of the profiles, our simulated data collapses reasonably
function ansatz of monomer density distribution. More speyye|| onto a universal curve as predicted by SCF. The expo-
cifically, h~N(woa“)™, whereNa is the chain length of neniial tail of monomer density profile is, however, in agree-
polymers,w is the excluded volume parameter, ands the  mnent with the prediction of SCF for finite chaifis,7]. The
grafting density. Later Milner, Witten, and Caté] pre-  |ength scale of the tail relative to the brush height decreases
sented a more detailed self-consistent fi8CH theory of ity chain length and grafting density and is vanishingly
polymer brushes. Instead of assuming a step function ofy )i at the long chain limit. Near the substrate, our Monte
monomer density distribution, 'SCF predicts a “parabth” Carlo data show a depletion layk8,7] at low grafting den-
brush whose monomer densify(z)] and end density gjiies (<0.09) but an enhancement in the monomer density
[€(2)] along the substrate normal directiGndirection can ot medium grafting densitiess{>0.1). This enhancement
be expressed as has been confirmed by performing several long Monte Carlo
5 simulations. To further investigate the difference in mono-
$(2) _T g2 52 _ mer density at different grafting densities, in Figéa)5and
7B~ gy H —290(H-2) ) SO :
o w 5(b), we show the monomer density distribution at different
time steps after releasing the brushes from their initial con-

V (N, 6)=(30, 0.04)
* (N, 6)=(50, 0.04)
x (N, 6)=(30, 0.13)
0 (N, 6)=(50, 0.13)
< (N, 6)=(30, 0.22)
+ (N, 6)=(50, 0.22)
o (N, 6)=(30, 0.36) E
A (N, 6)=(50, 0.36)

]
T

p=3
N
<05 -

and figuration. As shown in Figs. (8 (oc=0.02) and %) (o
5 =0.22), the polymer chains shrink to increase the system
e(zN W—Z(HZ—ZZ)HZQ(H -2 4) entropy and two peaks are observed near the substrate and at
o?B T2 ’ the brush tail. As time increases, both peaks gfthe outer

peak grows faster i@ than in (b)] and the outer peak
where H=h/(No® and Z=2z/(No'?) are rescaled brush moves toward the substrate. Finally, the outer peak stops
height and distance away from the substrate, @(®) is the  before reaching the substrate. As a result, near the substrate,
step function. we observe a depletion layer {g) for low grafting densities
To compare our simulation results with the predictions ofbut an enhancement layer (h) for medium grafting densi-
SCF, we plot the rescaled monomer density distribution andies. We conclude that polymer brushs at a medium grafting
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2 T T T T T TABLE I. The values ofB, v, andé for various chain lengths.
N 20 40 60
i A VN, 0)=(30,004) | B 0.27 0.31 0.32
& * (N, 0)=(50,0.04) y 0.17 0.28 0.31
80 x (N, 6)=(30, 0.13)
1.5 oy +A o (N, 6)=(50, 0.13) — ) 0.24 0.32 0.34
§. /N o (N, 6)=(30, 0.22)

+ (N, 6)=(50, 0.22)
i B Zg g;:gg;gjg 1 from the monomer density distribution by fitting E&). For

flexible polymers, theoretical prediction of the brush height
(hy<No” where B=1/3) is found to be in great agreement
with simulation results at the limit of long chains. For short
chains, the brush height is roughly proportional¢d* or
B=0.25, indicating that nonlinear stretching of polymer
chains becomes significant and one can express the stretch-
ing energy ad syetching® h3 for N~10. A list of the values of
B for various chain lengths is given in Table I. For semiflex-
ible polymer brushes, the brush heightd is expected to be
longer than that of flexible brushes due to the bending energy
and we havehg=h.+h;, where h, is the correction of
brush height due to bending energy. The dependence of
brush height lis) on the chain stiffness and temperature is
shown in Fig. 6 for N,o)=(20,0.22)(a), (40, 0.22 (b), and

FIG. 4. Rescaled end density distributions of polymer brushed60. 022 (c). The intercept of those curves with thexis in
along thez direction for T/e=7.5 and {N,o)=(30,0.04), (50, Fig. 6 gives the brush height of flexible brushes. It is clear
0.04, (30,0.13, (50,0.13, (30,0.23, (50,0.23, (30,0.36, and from Fig. 6 thath, is proportional toe/T and N. Further
(50,0.36. The solid line is a theoretical curve of SCF. H&tds  investigation shows no dependencéigbn the grafting den-
defined agN™ 1o~ 15, sity. From our Monte Carlo simulation results, we can ex-

press the brush height of semiflexible brushes as

density strongly compress near the substrate to increase the
entropy of the system. The agreement in the end density e
between theoretical predictions and our simulated data is hsf:kl?NJrkzNaﬁ, 5)
only good at the limit of long chain length and low grafting
density, as shown in Fig. 4. For short chains, the exponential
tail is significant. At medium grafting densities, the peak ofwherek,;=0.11 andk,=1.38. Therefore, the correction of
end density distribution is much sharper than that predictedrush height due to chain stiffness is about one tenth. Similar
by SCF. In this case, the end density is suppressed in thenalyses can be done for the end-to-end distahgg ¢f
inner region due to high monomer density. each chain as shown in Fig. 7 and we conclude an expression

The brush height of a polymer brush can be measuredf |¢; as

e(z)No "
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FIG. 5. Monomer density dis-
tributions of polymer brushes
along the z direction for T/e
=75, N=30 at various time
steps. Time (t) is in units of
Monte-Carlo steps. The grafting
density is 0.02a) and 0.22(b).
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correction to end-to-end distance on the grafting density
(ao”) and vy increases with\. In the appendix, we present a
simple scaling argument for Eq&) and (6).

IV. DISTRIBUTION OF BENDING ANGLES

To further analyze equilibrium properties of polymer
brushes, we study the change in the bending angle distribu-
tion as temperature varies. For an equilibrated brush, the dis-
tribution of bending angles at high temperatures is uniform
except for large angles due to the excluded volume constraint
(no overlaps between monomgrés temperature decreases,
the angular distribution is expected to be more weighted at
small angles and there exists an unbiased ang|g \Wwhose
weighting does not change with temperature. Since the prob-
ability of a bending angle is proportional to its Boltzmann
factor, we can express the weighting of iltlke angle at tem-
peratureT as

o]

1
Pi(T)=N—exr<?), (7)

whereN, is the number of allowed angles,= E ,— E; is the
weighting factor E,, is the energy of the unbiased angle, and

FIG. 6. The dependence of brush height of semi-flexible poly-E; is the energy of théth angle. To determine the unbiased
mer brushes on the bending rigidity and temperature frof)
=(20,0.22)(a), (40,0.22 (b), and(60,0.22 (c).

wherek;=0.21,k,=2.1, and the values af and é are given
in Table I. Unlike Eq.(5), Eq. (6) shows a dependence of the

1

end-to-end distance (lattice spacing)

00

I~k —eNauk No?
sf 3T 4 ]

80

60

40 -

Oe=0.2
O e=0.4
¢ e=0.6
x e=0.8
Ae=1.0

20
0

uT

(6)

angle, we can substitute it by anyone of thdseangles and
check if the normalization conditioﬁi'\‘flPi(T)=l holds at
various temperatures. Assuming that the energy of a polymer
chain is dominated by the bending energy, we can calculate
the corresponding spectrum of weighting factor for a particu-
lar form of bending energy. Here, four different forms of
bending energy are used to investigate the spectrum and they
are expressed in the following:

ESSNe= o(1— cos#),

Efnea=2e( g/ ),
8

Eguadric: 2¢e( 0/77)2,
Eguartic: 2e( 6/ 77)4,

where the range off is chosen to be between 0° and 144° in
order to compare with our simulation results using the bond
fluctuation modelno overlaps between monomers rules out
angles larger than 141°f we divide the range ob into 145
angles, the unbiased angle can be obtained by varying the
spectrum of weighting factofe;} subject to the normaliza-
tion conditionE{“:alPi(T) =1 at various temperatures, which

is found to be 75° folEE™"S72° for Ey°*,84° for EZ*",

and 96° forE3"@"™°, It is obvious that the unbiased angle for

a linear bending energy is 72° which is at the middle of the
angular range. For the other three asymmetric forms of bend-
ing energy, the unbiased angle is shifted to larger values. The
angular distribution can be calculated at any temperature

FIG. 7. The dependence of end-to-end distance of semi-flexiblérom {«;} and is displayed_ in Fig. 8 fof/e=1. The agree-
polymer brushes on the bending rigidity and temperature forment between the theoretical curve and our simulation data

(N, o) =(20,0.22) (), (40,0.22 (b), and(60,0.23 (c).

of the cosine form is excellent. We note that, Tde<1, the
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FIG. 8. Theoretical predictions of the distribution of bending

angles of a polymer brush aT=1 for four different forms of . .
i . - - 0.4 (O), 0.6 (¢), 0.8 (x), and 1(A) using the cosine form of
bending energy. The angular distribution of the cosine form is muc ending energy. The solid line is a theoretical curveder0.2.

more populated at small bending angles. Open circles are simula-
tion data of the cosine form.

FIG. 9. The spectrum of weighting fact¢w;} for e=0.2 (O),

brush, it is convenient to define an order parameser
unbiased angle calculated deviates from the above predicted (3(cos w).,—1)/2 to characterize the orientational order-
values and one should expect a slightly modified angulaing, wherew is the angle between orientation of a segment
distribution. and the normal to the substrdtee., thez direction. To view
The distribution of bending angles can also be measured
at various temperatures in our simulations from which the 44
spectrum of weighting factor is obtained. In our model, if we
divide the range off into 180 units, there are 72 allowed

cosine

bending angles and the maximum is 144°. To remove the e [ingQr
lattice effects, we rescale the angular distribution at tempera- ---- quadric
ture T by dividing it by the distribution at infinite tempera- —— - quartic

ture such that the rescaled distribution is uniform at high
temperatures. The calculated spectr{um} using the bond
fluctuation model foro=0.22 andN =20 is shown in Fig. 9
where only part of data points are shown. The solid line is a
theoretical curve predicted by;=e(cos;—cos6,) with e
=0.2 andf,=75°, which fits our simulation dat&ircles
very well. Moreover, from Fig. 8 it is clear that small bend-
ing angles are more populated for the cosine form of bending
energy than for other forms, and we expect the degree of
stretching of polymer chains to be
cosine>linear>quadric>quartic. In Fig. 10, we show the
monomer density distribution fos-=0.22, N=50, andT/e

=1 using four different forms of bending energy. The above
prediction is confirmed by the fact that the brush height is in
the sequence of cosihdinear>quadric>quartic.

monomer density distribution

0 20 40 60
V. ISOTROPIC TO NEMATIC PHASE TRANSITION z

The isotropic-nematic phase transition of polymer sys- FIG. 10. The monomer density distribution of a polymer brush
tems is also an interesting subject and attracts much attentigér o=0.22,N=50, ande/T=1 for four different forms of bending
[19,5]. To describe such a phase transition in a polymernergy.
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S FIG. 12. The order paramete® as a function ofN for T
FIG. 11. The order paramet8ias a function ot for N=20 and ~ — 10000 ance=1 at various grafting densitieSis aimost a con-
e=1 at various temperatures. A continuous isotropic-nematic phas%ta“t for large chain lengths and is smaller for small chain length
transition occurs at a small grafting density<€0.02). since the polymer chains behave as “nonlinear” springs for small

N.

this phase tran_sition in a simple way, we .co.nsider a fre%my at very low grafting densities o{(<0.02) and the
energy per chain composed of an anisotropic interaction ensptropic-nematic phase transition is possible to be continu-
ergy (fanisotropy @nd an orientational free energfofentatiod-  ous. It is clear that the above simple model cannot describe
This anisotropic interaction energy could come from thethe isotropic-nematic phase transition of polymer brushes
nematic interaction between two persistent segments or thend a more accurate model is desired. Moreover, as shown in
bending energy between two consecutive segments and ike previous section, the orientation free energy in(&Q). is

assumed to have a power series expansiog in incorrect at the short chain limit and in this limit polymer
chains behave as “nonlinear” springs which favor an isotro-
fanisotmpyfvconst—ustJr---, (9) pic phase over a nematic phase. In Fig. 12, we show the

order parameteBas a function of chain lengtR. Our results
where u=u(e,o) is the coefficient of anisotropic interac- show thatSis almost a constant for long chain lengths and
tions and always positive since both the bending energy andecomes smaller ad decreases. In addition, the order pa-
segment-segment interaction tend to align a polymer chairameterS increases with the grafting density at a very high
along thez direction. The orientation free energy can betemperature T=10000) which indicates that the excluded
approximated in the following form as suggested by Kuz-volume effect is the dominant source to drive the system to a

netsov and Chefb]: nematic phase in our model.
N(2S+1) VI. EFFECTS OF LOCAL GRAFTING DENSITY
Forientatio™ —5g 77178+ cONSt. (10 FLUCTUATION
3 In previous sections, we have studied the equilibrium

structure of randomly grafted polymer brushes without wor-

Such a free energyf {hisotropyt forientation €an be easily mini-  rying the effects of local grafting density fluctuation. How-
mized to find the ground state and the isotropic-nematic tranever, it is inevitable to face questions about the fluctuation
sition is expected to be a first order phase transition. effects and their importance. For example, it would be diffi-

To examine this simple theory, we have performed manycult and expensive to grow polymer brushes with an uniform
simulations to study the phase transition of polymer brushegrafting density in industrial applications. To investigate the
from an isotropic state to a nematic state by varying theeffects of local grafting density fluctuation, we measure the
bending rigidity, grafting density, temperature, and chainmonomer and end density distributions for polymer brushes
length. As shown in Fig. 11, the order parame®éncreases of the same average density but different variance. Here the
linearly from zero as the grafting density increasesTbde  variance of grafting density is defined aw
=1, 2.5, 5, 7.5, 20, and 10000. The isotropic phase occurs \{(o; /0—1)2>, where o is the average grafting density,
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. FIG. 13. The monomer density
distribution of polymer brushes at
variousv and T for (a) o=0.02
and (b) 0=0.22. The polymer
chain length isN=50 and the
bending rigidity ise= 1.

s
b4

monomer density distribution

0.02

(a)

o; is the local grafting density at thieh patch, and the sub- be bent to less dense regions near the substrate. This phe-
strate is divided into 25 patches of same area. The monoméomenon is true for both flexible and semiflexible brushes at
density distributions of flexibleT/e=7.5) and semiflexible various grafting densities. However, for small grafting den-
(T/e=1) polymer brushes of chain lenghh=50 are shown sities the brush height is slightly reduced in the case of a
in Fig. 13 forc=0.02(a) ando=0.22(b). From Fig. 13, it  larger fluctuation, but the brush height for medium grafting
is clear that the effects of local grafting density fluctuationdensities is not affected since it is more difficult for those
on the monomer density distribution are insignificant andmonomers in the outer region to move in due to a larger
therefore we only show two sets of data<{2 and 4.9. To  monomer density. Similarly the end density in the inner re-
be more specific, we find that the monomer density isgion is enhanced for a larger fluctuation as shown in Figs.
slightly enhanced near the substrate for a larger local grafting4(a) (0=0.02) and 1) (0=0.22). The reason for this
density fluctuation. This enhancement is because polymernhancement of the end density in the inner region is be-
chains in a denser region tend to repel each other stronglgause fluctuation tends to reduce the monomer density in the
due to the exclude volume effect, particularly for thoseouter region and makes it easier for the end monomers to
monomers near the fixed ends, and these monomers can onyove toward the substrate.

0.0015 —————————————— 0.015 p—————1——F——1——
RN — 0, v)=(10,20) ] [ —— (T,v)=(10,02)
SN e (T,v)=(1.0,49) | L (T, v)=(1.0, 1.5)
/oy - — - (T,7)=(15,2.0) - —- (T,9=(75,02)
— — (T,v)=(15,49) | | — — (T,9)=(75,15)
g
= 0001 - 0.01
=
=2
E
2
=
=y
»n
=
D
s :
'g 0.0005 - /Y b 0.005
o i R
(@
L —— A 0
0 10 20 30 40

FIG. 14. The end density distribution of polymer brushes at varioaadT for (a) o=0.02 and(b) 0=0.22. The polymer chain length
is N=50 and the bending rigidity is=1.
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VIl. SUMMARY AND CONCLUSIONS APPENDIX: SCALING OF END-TO-END DISTANCE OF

. . SEMIFLEXIBLE POLYMER BRUSHES
To summarize, we have used the bond fluctuation model

to study various equilibrium properties of flexible and semi- The end-to-end distandg) of long flexible chains ofN
flexible polymer brushes in great detail. Significant improve-segments is known to b¢Na, wherea is the Kuhn length.
ment toward understanding polymer brushes has been ma@®r semi-flexible polymer chains, the mean square end-to-
in this paper. For flexible brushes, our simulation results arend distance can be written as

in general consistent with theoretical predictions of SCF. N N

However, the depletion layer near the substrate is only ob- 12— z E

served at low grafting densities, and the monomer density st\ |\ & Fi = fi

near the substrate is enhanced at medium grafting densities

due to a strong compression of polymer chains. Note that, NN

although the grafting density in our simulations is up to 0.36, =Na®+2{ > >

we have not seen the Pincus regime where polymer chains mhmi

are strongly stretched20]. For semiflexible polymer N-1

brushes, we find that the correction of brush height due to the =|2+ 2< E r- ri+1> , (A1)
bending energy is proportional tde/T, and is only about =1

one tenth of the brush height. Interestingly, we find that thgq, small bending rigiditye, wherer, is the bond vector of

correction of end-to-end distance due to bending rigidity ,istheith segment. For the cosine form of bending energy, the
also one tenth of the end-to-end distance, but this correctiofagrest bond-bond correlation can be calculated as

has a dependence eanwhich needs a theoretical explana-

tion. Moreover, the distribution of bending angles of poly- ) e

mer brushes is analyzed at various temperatures. Four differ- ~ (fi*Ti+1)=2a f cos¢ exp — (1—cosd) |do

ent forms of the bending energy are used to study the angular

distribution and their corresponding unbiased angles are cal- me

culated. Compared with our simulation results, we find ex- =7 (A2)

cellent agreement for the spectrum of weighting fagtes.

In addition, we have also investigated the isotropic to nemTherefore the mean square end-to-end distance of a semiflex-
atic phase transition of polymer brushes. From our simulaible chain islZ,~(1+e/T)I2. Rescaling the length by a fac-
tions, we find that this phase transition is controlled by thetor 1—e/(2T), the free energy of a semiflexible brush can be
excluded volume effector the grafting density and the written as

bending energy has very little effect on the transition. In

contrast to a first order phase transition predicted by a simple 2(,_&
. . . . . 2 Isf 1
model, we find a possible second order isotropic-nematic Neo T
transition at a very small grafting density. Furthermore, for F~ e * N ' (A3)
short polymer chains, the nonlinear effect is found to favor Isf( 1- >T

the isotropic phase over the nematic phase. Finally, we have
studied the effects of local grafting density fluctuation. ForMinimizing Eq. (A3) with respect td ¢, we obtain
large fluctuation, both monomer density and end density are
enhanced near the substrate at various grafting densities and
temperatures. However, these effects are small and can pos-
sibly be ignored in industrial applications.

e
|Sf~NO'1/3( 1+ =

Tl (Ad)

which is consistent with Eq6) in the long chain limit. We
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